# Section 15.5 Applications of Multiple Integrals 

Density and Mass

Moments and Centers of Mass
Example, 3-dimensional

1 Density and Mass

## Density and Mass

Suppose a lamina occupies a region $D$ of the $x y$-plane and its density (in units of mass per unit area) at a point $(x, y)$ in $D$ is given by $\delta(x, y)$, where $\delta$ is a continuous function on $D$.



$$
\text { Mass }=\lim _{(n, m) \rightarrow(\infty, \infty)} \sum_{i=1}^{n} \sum_{j=1}^{m} \delta\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A=\iint_{D} \delta(x, y) d A
$$

## Density and Mass

Similarly, if a solid body occupies a region $S \subset \mathbb{R}^{3}$ and its density (in mass per unit volume) at a point $(x, y, z)$ in $S$ is $\delta(x, y, z)$, then its total mass is

$$
\iiint_{S} \delta(x, y, z) d V
$$

Note: Some sources use $\sigma$ for density in the plane and $\rho$ for density in 3-space.
Example 1: Find the mass of the rectangle $R=[0,2] \times[0,3]$ with density $\delta(x, y)=x y^{2} \mathrm{~kg} / \mathrm{m}^{2}$.

Solution:

$$
\begin{aligned}
\iint_{R} \delta(x, y) d A & =\int_{0}^{3} \int_{0}^{2} x y^{2} d x d y \\
& =\left(\int_{0}^{2} x d x\right)\left(\int_{0}^{3} y^{2} d y\right)=2 \cdot 3=6 \mathrm{~kg}
\end{aligned}
$$

2 Moments and Centers of Mass

## Moments and Center of Mass

The moments $M_{x}$ and $M_{y}$ of a lamina measure how balanced it is with respect to the $x$ - and $y$-axes.

$$
M_{x}=\iint_{D} y \delta(x, y) d A \quad M_{y}=\iint_{D} x \delta(x, y) d A
$$

where $D$ is the region occupied by the lamina.
The coordinates $(\bar{x}, \bar{y})$ of the center of mass are

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{m}=\frac{1}{m} \iint_{D} x \delta(x, y) d A \\
& \bar{y}=\frac{M_{x}}{m}=\frac{1}{m} \iint_{D} y \delta(x, y) d A
\end{aligned}
$$



Think of $\bar{x}$ and $\bar{y}$ as weighted averages: the factor $\delta$ assigns more weight to points with larger mass density.

Example 2: Find the mass and center of mass of a triangular lamina with vertices $(0,0),(1,0)$, and $(0,2)$ and density function $\delta(x, y)=1+3 x+y$. Solution: The lamina is bounded by $y=2-2 x$, $y=0$, and $x=0$.
Its mass is

$$
m=\iint_{D} \delta(x, y) d A=\int_{0}^{1} \int_{0}^{2-2 x}(1+3 x+y) d y d x=\frac{8}{3}
$$

Center of mass:

$$
\bar{y}=\frac{1}{m} \int_{0}^{1} \int_{0}^{2-2 x} y(1+3 x+y) d y d x
$$

$$
\begin{aligned}
\bar{X} & =\frac{1}{m} \int_{0}^{1} \int_{0}^{2-2 x} x(1+3 x+y) d y d x \\
& =\frac{1}{m} \int_{0}^{1} \int_{0}^{2-2 x}\left(x+3 x^{2}+x y\right) d y d x \\
& =\left.\frac{1}{m} \int_{0}^{1}\left(x y+3 x^{2} y+x y^{2} / 2\right)\right|_{0} ^{2-2 x} d x \\
& =\frac{1}{m} \int_{0}^{1}\left(x(2-2 x)+3 x^{2}(2-2 x)+x(2-2 x)^{2} / 2\right) d x \\
& =3 / 8
\end{aligned}
$$

$$
=11 / 16
$$

$$
(0,2) \hat{y}_{y}^{y} y=2-2 x
$$



## Moments and Center of Mass

In $\mathbb{R}^{3}$, the moments of a solid $S$ are defined not with respect to the axes as in $\mathbb{R}^{2}$, but with respect to the coordinate planes:

$$
\begin{array}{ll}
M_{y z}=\iiint_{S} x \delta(x, y, z) d V & \bar{x}=\frac{M_{y z}}{m} \\
M_{x z}=\iiint_{S} y \delta(x, y, z) d V & \bar{y}=\frac{M_{x z}}{m} \\
M_{x y}=\iiint_{S} z \delta(x, y, z) d V & \bar{z}=\frac{M_{x y}}{m}
\end{array}
$$

Again, the moments measure how balanced the solid is with respect to each of the coordinate planes.

Example 3: Find the center of mass of the tetrahedron $S$ of uniform density bounded by the coordinate planes and the plane $x+y+z=1$.

Solution: Let $\delta$ be the density of $S$ (so $\delta$ is a constant). The mass of $S$ is

$$
\begin{array}{rlr}
\iiint_{S} \delta d V=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \delta d z d y d x & =\frac{\delta}{6} \\
M_{y z}=\iiint_{S} x \delta d V=\frac{\delta}{24} & \bar{x} & =\frac{1}{4} \\
M_{x z}=\iiint_{S} y \delta d V=\frac{\delta}{24} & \bar{y} & =\frac{1}{4} \\
M_{x y}=\iiint_{S} z \delta d V=\frac{\delta}{24} & \bar{z}=\frac{1}{4}
\end{array}
$$

